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Equation of Gauss
Hypergeometric series

Let a, b, c ∈ C. Consider a differential equation

t(t − 1)y ′′ + ((a + b + 1)t − c)y ′ + aby = 0

Equivalent form: D = t(θ+ a)(θ+b)− θ(θ+ c − 1), where θ = t d
dt

Dy = 0

Parameters a, b, c are called hypergeometric and they form a pair
of tuples (a, b) and (1, c).

F<a,b,c>:=FunctionField(Rationals(),3);
F0<t>:=RationalDifferentialField(F);
RD<D>:=DifferentialOperatorRing(F0);
RH<H>,mp:=ChangeDerivation(RD,t);
op:=t*(H+a)*(H+b)-H*(H+c-1);
1/t*Inverse(mp)(op);
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Equation of Gauss
Hypergeometric series

For c not integral we can write down the following basis of
solutions:

t(t − 1)y ′′ + ((a + b + 1)t − c)y ′ + aby = 0

Define

F

(
a b

c
| t
)

:=
∞∑
n=0

(a)n(b)n
(c)nn!

tn

where
(x)n = x · (x + 1) · . . . · (x + n − 1)

A basis of (two independent) solutions to this differential equation
around t = 0 is

y = F

(
a b

c
| t
)

y = t1−cF

(
a + 1− c b + 1− c

2− c
| t
)



Hypergeometric equations

For positive integer d we consider two tuples α1, . . . , αd ∈ C and
β1, . . . , βd ∈ C. We define a hypergeometric operator

D(α, β) := t · (θ+α1) · . . . · (θ+αd)− (θ+β1−1) · . . . · (θ+βd −1)

Differential equation D(α, β)y = 0 has locally d independent
solutions

Around 0 one can describe the basis in terms of hypergeometric
functions (βi distinct modulo 1)

dFd−1

(
α1 . . . αd

β1 . . . βd−1
| t
)

:=
∑∞

n=0
(a1)n·...·(αd )n

(β1)n·...·(βd−1)nn!
tn

Basis of solutions: for 1 ≤ i ≤ d

t1−βi dFd−1

(
α1 − βi + 1 . . . αd − βi + 1
β1 − βi + 1 . . .̌ . . . βd−1 − βi + 1

| t
)
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Monodromy groups

Hypergeometric equation D(α, β) come with differential Galois
group (algebraic group) and monodromy group (discrete
subgroup).
Differential Galois groups DG (α, β) of D(α, β) were described and
classified by Beukers and Heckman.
DG (α, β) of D(α, β) is finite iff the elements of α, β interlace.

The monodromy group can be computed by a theorem of Levelt:
for αi − βj /∈ Z (hence the system is irreducible)

pα =
∏

(t − exp(2πiαk)), pβ =
∏

(t − exp(2πiβj))

Let A be the companion matrix of pα and B of pβ . Then h∞ = A,
h0 = B−1 and h1 = A−1B .
Monodromy group M(α, β) is spanned by h0, h∞. Zariski closure of
M(α, β) gives DG (α, β).
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Transition to finite fields

F (α, β|z) =
∞∑
n=0

(α1)n · · · (αd)n
(β1)n · · · (βd)n

zn.

Γ(β1) · · · Γ(βd)

Γ(α1) · · · Γ(αd)

∞∑
n=0

Γ(α1 + n) · · · Γ(αd + n)

Γ(β1 + n) · · · Γ(βd + n)
zn .

∞∑
n=0

d∏
i=1

(
Γ(αi + n)(1− βi − n)

Γ(αi )Γ(1− βi )

)
(−1)dnzn .



Transition to finite hypergeometric sums
Let χ be any multiplicative character of finite field F×q with values
in C×. We fix an additive character ψ. A Gauss sum g(χ, ψ) is

g(χ, ψ) =
∑
x∈F×

q

χ(x)ψ(x).

For a fixed generator ω of the group of characters we denote by
g(m) the sum g(ωm, ψ).

Definition (Finite hypergeometric sum, BCM)
Let α, β in Qd such that αi 6≡ βj(mod Z) and qαi and qβj are
integral. We define for any t ∈ Fq, q = q − 1

Hq(α, β|t) =
1

1− q

q−2∑
m=0

d∏
i=1

(
g(m + αiq)g(−m − βiq))

g(αiq)g(−βiq)

)
ω((−1)d t)m .

These sums with different normalisation were considered by Katz,
Greene and McCarthy.
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Finite geometric sums a la Greene, Katz and
Beukers-Cohen-Mellit

We say that the sum Hq(α, β) is defined over Q if polynomials
A(x) =

∏d
j=1(x − e2πiαj ) and B(x) =

∏d
j=1(x − e2πiβj ) are defined

over Q (actually Z). Then there exist integers p1, . . . , pr and
q1, . . . , qs such that

d∏
j=1

x − e2πiαj

x − e2πiβj
=

∏r
j=1 x

pj − 1∏s
j=1 x

qj − 1
.

Theorem (Beukers-Cohen-Mellit, 2016)

Hq(α, β|t) = (−1)r+s

1−q
∑q−2

m=0 q
−s(0)+s(m)g(pm,−qm)ω(εM−1t)m

where g(pm,−qm) = g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm),
M =

∏r
j=1 p

pj
j

∏s
j=1 q

−qj
j and ε = (−1)

∑
i qi and s(m) is the

multiplicity of the zero e2πim/q in GCD(A(x),B(x)).
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Canonical variety

Variety Vt attached to hypergeometric datum (p1, . . . , pr ),
(q1, . . . , qs)

Vt : x1+x2+· · ·+xr−(y1+· · ·+ys) = 0, txp1
1 · · · x

pr
r = yq1

1 · · · y
qs
s

Vt ⊂ Pr+s−1

Lemma (Beukers-Cohen-Mellit, 2016)
Assume that gcd(p1, . . . , pr , q1, . . . , qs) = 1. Let Vt(F×q ) be the set
of points on Vt with coordinates in F×q . Then

|Vt(F×q )| =
1
q

(q − 1)r+s−2 +
1

q(q − 1)

q−2∑
m=0

g(pm,−qm)ω(εt)m,
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Theorem (Beukers-Cohen-Mellit, 2016)
There exists a smooth compactification Vt of Vt such that

|Vt(Fq)| = Prs(q) + (−1)r+s−1qmin(r−1,s−1)Hq(α, β|Mt).

where Prs is a polynomial (explicit).

This compactification might not be a minimal one. Subscheme
Vt \ Vt is produced combinatorially but is quite difficult to work
with.

For canonical varieties of dimension 2 we can obtain often a better
compactification (minimal).



L-function datum

I Hypergeometric data (α, β) comes with degree and weight.

I degree = max (length(α), length(β))

I Fedorov proved that the connection of rank d on trivial
holomorphic bundle over P1 \ {0, 1,∞} has a real polarizable
variation of Hodge structures and gave a recipe for the Hodge
vector
(with αm + αd+1−m ∈ Z, βm + βd−1 + 1−m ∈ Z):

ρ(j) := #{i : αi < βj} − j

weight = p+ − p−, p+ = max ρ(k), p− = min ρ(k) and

rkHk−p−,−k+p+ = #ρ−1(k)



L-function datum

I One can compute the good factors of the L-function of
hypergeometric motive H(α, β|t) (defined over Q for
t ∈ Q) using the hypergeometric formula Hq(α, β|t)

I Bad factors correspond to primes p that divide αi or βj or
numerator or denominator of (t − 1)/t.

I Computation of L–function of the hypergeometric motive
H(α, β|t) can be partially done now in MAGMA (Mark
Watkins package).



Questions

I What can one say in general about those L-functions?
(Rodriguez Villegas, Roberts, Watkins; Cohen, Kedlaya,
Voight, Yui, . . . )

I Equivalently one can talk about a motive X (α, β|t) attached
to this data. In what sense the motive is defined, e.g. is there
an effective Chow motive. Can one compute the motivic
Galois group when this motive varies in family?

I Hypergeometric motives of weight 0 correspond to Artin
representations.
Hypergeometric motives of weight 1 originate from curves.
Hypergeometric motives of weight 2 can be found in surfaces.
....
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Motives of surfaces
X - smooth projective surface over a number field K

H2(X ) = H2
et(XK ,Q`) has pure weight 2 and the hypergeometric

motive of weight 2 can be found essentially in the transcendental
part (not algebraic) of this subspace.

From the theory of motives of surfaces this produces a Chow
motive via a decomposition of the diagonal correspondence
[∆X ] =

∑
0≤i≤4 πi (Kahn-Murre-Pedrini):

h(X ) =
∑
i

hi (X ), hi (X ) = (X , πi , 0)

π2 splits as πalg2 + πtr2 and we have the decomposition

h2(X ) ∼= halg2 (X )⊕ t2(X )

where halg2 (X ) ∼= h(NSX )(1) is the Artin motive associated to
NSX = NS(X ⊗K K sep)Q (Q-linear geometric Néron-Severi group
with GK -module structure).



Fibred surfaces

We consider a smooth projective irreducible surface X with
relatively minimal fibration X → C over a field k = k .
One has the intersection pairing on NS(X )/tors.
Generic fibre of genus 1 with a marked point provides a structure of
elliptic surface.
For genus g > 1 we pass to the Jacobian of the generic fibre.
Genus 0 fibrations are helpful for the unirational implies rational
argument.

There is a Shioda-Tate formula for the rank of the NS group

rkNS(X ) = 2 +
∑
v∈R

(mv − 1) + rank(J(k(C ))).

Singular fibres were classified by Kodaira in genus 1 case and in
general it is a hard but computable task.



Motives coming from Artin representations

The monodromy group of the hypergeometric equation is finite,
hence a differential Galois group is finite. This implies that
hypergeometric series lies in certain finite algebraic extension of
Q(t).

I If the motive comes from a variety Vt of dimension 0 we can
explicitely see the Galois action on the closed points

I If Vt is a positive dimension vartiety then the motive is hidden
in the subgroup of algebraic cycles in the middle etale
cohomology of a suitable compactification.

I If Vt is a surface then we build a minimal regular model St and
analyse the image of NS(St) in H2

et(St ,Q`).



Theorem (BN, 2017)
Let H(α, β|t) be a hypergeometric motive of degree d , 2 ≤ d ≤ 8
and weight 0. Suppose that the canonical variety Vt of H is a
surface.

Then there exists an elliptic (or hyperelliptic) relatively minimal
fibration St → P1 such that H(α, β|t) is an explicit Chow
submotive of NS(St).

|St(Fq)| = 1︸︷︷︸
H0

+ 0︸︷︷︸
H1

+ f (q)︸︷︷︸
H2 not HGM

+ qH(α, β|MHt)︸ ︷︷ ︸
H2 HGM

+ 0︸︷︷︸
H3

+ q2︸︷︷︸
H4



Case [−1, 2,−3,−4, 6] of degree 3, weight 0.

Variety Vt : tx2
2 − x1x

3
3 (−1− x1 − x2 − x3)4 = 0. We find an

elliptic fibration

Et : y2 = x3 − tx2 +
t2(u − 1)2u4

4

over Q(t)(u). Reducible singular fibres at u = 0 (I4) and u = 1 (I2
non-split, with Galois action above Q(

√
−t). Elliptic fibration

Et → P1 is rational and according to classification theorem of
Shioda-Inose we have (generically) for K = Q(t)

Et(K (u)) ∼= A∗1 ⊕ A∗3

We use the fact that the Mordell-Weil group is spanned by points
of the form P = (au2 + bu + c , . . .). We can also use the map to
singular fibres to restrict the coefficients a, b, c . Finally we solve a
Groebner basis problem.



The following points span the Mordell-Weil group:

R1 = (0, 1/2t(u − 1)2u2)

and

Qi = (ai tu(u − 1),
ai t
√
−t

2
u(u − 1)(u +

2
a

))

for 1 ≤ i ≤ 4 such that ai is a root of a4t + 4a3t + 1.

Degeneration: For t 6= 1
27 we have Et(K (u)) ∼= A∗1 ⊕ A∗3 and

otherwise (A∗1)2 ⊕ 〈14〉.

Group Et(K (u)) has index four sublattice spanned by R1 and three
points

Pi = (biu
2, (

√
bi t

2
u − t2

2
√
bi t

)u2), i = 1, 2, 3

where 4b3 − bt + t2 = 4
∏3

i=1(b − bi ).



Theorem (BN, 2017)
Let t ∈ Q be general. The Galois module H = H2

et(EQ,Q`) is
Gal(Q/Q) isomorphic to

15 ⊕ ρ2 ⊕ ρ3

where ρ2 is a two-dimensional representation attached to the
quadratic character of Q(

√
−t) and ρ3 is the Artin representation

associated with the space 〈P1,P2,P3〉 ⊗Q`.

|Et(Fq)| = 1 + (6 + (
−t
q

))q + Tr Frobq | ρ3 + q2.

Tr Frobq | ρ3 = qHq(α, β|27t).



Pi = (biu
2, (

√
bi t

2
u − t2

2
√
bi t

)u2), i = 1, 2, 3

where 4b3 − bt + t2 = 4
∏3

i=1(b − bi ).
We have that

D(1/3, 2/3; 3/2)b = 0

Hypergeometric differential equation D(1/3, 2/3; 3/2)y = 0 has
two independent solutions around 0 with basis generated by

F1 = 2F1(
1
3
,
2
3

;
3
2
| z) F2 = z−1/2

2F1(−1
6
,
1
6

;
1
2
| z)

so the roots x1, x2, x3 of x3 − 27
4z x + 27

4z are

x1 = F1 x2 = −1
2
F1 +

3
√
3

2
F2 x3 = −1

2
F2 −

3
√
3

2
F2

So x(Pi ) = tαi (27t).



Differential equation D(1
6 ,

3
6 ,

5
6 ; 3

4 ,
5
4)y = 0 has three independent

solutions around 0

G1 = 3F2(
1
6
,
3
6
,
5
6

;
3
4
,
5
4
| z)

G2 = z
1
4 3F2(

5
12
,
9
12
,
13
12

;
5
4
,
6
4
| z) G3 = z−

1
4 3F2(− 1

12
,
3
12
,
7
12

;
3
4
,
2
4
| z)

The roots ±y1,±y2,±y3 of the polynomial 4
27zx

6 − x2 + 1 are

y1 = G1 y2 =
1

2
√
233/4

(G2−6
√
3G3) y3 =

√
−1

2
√
233/4

(G2+6
√
3G3)

Pi = (txi (27t)u2, u2(
tyi (27t)

2
u − t2

2tyi (27t)
)).



Hyperelliptic case

We analyse example in degree 6, weight 0: [-2,5,-7,-10,14]. Variety
Vt with fibration determined by u = x3x4

x2
5

determines a smooth

projective surface St with fibration π : St → P1 and generic fibre

Ct : y2 = 4x5 + 4x2tu2 − 4t2u + t2

With choice of parameter u′ = x1x3
x2
5

we can show that the surface
St is unirational, hence by a theorem of Castelnuovo it is rational.
For such genus g fibrations Saito proved that Picard rank satisfies

ρ(St) ≤ 4g + 6

Shioda proved that the Jacobian J = J(Ct) over Q(t)(u) satisfies
J(Q(t)(u)) ∼= NS(St)/T where T is the trivial lattice spanned by
zero section, general fibre and components of reducible fibres of
fibration π.



All fibres except the fibre at u =∞ are irreducible. That one looks
like this

32

1
2

1 1

2

We find a point P0 = (0, t) on Ct and we have also a unique point
at infinity P∞. There is a Galois orbit of points

Pa = (a, 2a
√
t(u − t/(2a2)))

where 4a7 + a2t2 − t3 = 0.

Points on the Jacobian Q0 = P0 − P∞ and Qa = Pa − P∞ are
linearly independent and form a basis of the Mordell-Weil group
(which follows from the height computation and the upper bound).
The Néron-Severi lattice is unimodular (because the surface is
rational!). From the point count it follows that

St(Fq) = 1 + 4q + 2q(1 + ω(t)(q−1)/2) + qHq(α, β|Mt) + q2

Subgroup of NS(St) spanned by sections Pa (dimension 7)
corresponds to the hypergeometric motive.
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Number γ list Variety other prop.

1 [* -1, -1, 2 *] E([0, (1+u)2
4 , 0, tu2(1+u)

2 , t2u4
4 ]) rank 1 (A∗

1 lattice)

Table: List of degree 1, weight 0 motives

Number γ list Variety other prop.

1 [* 1, -2, -2, -3, 6 *] E([−t3u2, 1/4t4(u − 1)2u4]) rank=4 (D∗
4 lattice)

2 [* -2, -2, 4 *] D=1, No=1 (non-primitive)

3 [* -1, -2, 3 *] E(0, u2
4 , 0,

1
2 t(u − 1)u2, 14 t

2(u − 1)2u2) rank = 2 (A∗
2 ⊕ Z/3)

Table: List of degree 2, weight 0 motives

Number γ list Variety other prop.

1 [* -1, 2, -3, -4, 6 *] E([tu(u + 1), t2
4 ]) (param. 1) rank=4 (D∗

4 lattice)
2 [* -3, -3, 6 *] D=1, No=1 (non-primitive)
3 [* -1, -3, 4 *] E([0, u2, 0, 16t(−1 + u)2u, 0]) rank=3 (A∗

3 + Z/2)

Table: List of degree 3, weight 0 motives



Number γ list Variety other prop.

1 [* -1, 2, 3, -4, -6, -6, 12 *] E([−u2(u + 1)2t, 1/4t2]) rank =8 (E∗
8 lattice)

2 [* 2, -4, -4, -6, 12 *] D=2, No=1 (non-primitive)
3 [* 1, -3, -4, -6, 12 *] E([−t3(u + 1)2u2, t5]) rank =8 (E∗

8 lattice)
4 [* -2, 3, -5, -6, 10 *] E([0, t/16, 0, 0, 2t4(u − 1)u5]) rank = 4 (A∗

4 lattice)
5 [* 1, -2, -4, -5, 10 *] E([0, 4/t + u2, 0, 0,−64u5]) rank = 4 (A∗

4 lattice)
6 [* -1, 3, -4, -6, 8 *] E([−tu2(u + 1)2, (1/4)t2u2]) rank =6 (E∗

6 lattice)
7 [* -4, -4, 8 *] D=1, No=1 (non-primitive)
8 [* 1, -2, -3, -4, 8 *] E([−t3u2(u + 1)2, t5u2]) rank =6 (E∗

6 lattice)
9 [* -2, -4, 6 *] D=2, No=3 (non-primitive)
10 [* -1, -4, 5 *] y2 = x6 + (−2u − 2)x5 + (u + 1)2x4 −

4tu5

11 [* -2, -3, 5 *] E([0, 0, 0,−t3u3, 14 t
4(u − 1)2u2]) rank=5 (A∗

5 lattice)

Table: List of degree 4, weight 0 motives

Number γ list Variety other prop.

1 [* -1, 4, -5, -8, 10 *] E([t − u3,−(u2(4t − u2))/4]) rank =7 (E∗
7 lattice)

2 [* -1, 2, -5, -6, 10 *] E([0,−tu2, 0,−t3u, t4u(u2 + t)]) rank=6 (E∗
6 lattice)

3 [* -5, -5, 10 *] D=1, No=1 (non-primitive)

4 [* 2, -3, -4, -5, 10 *] E([0,−t, 0, 0,− t2(u−1)u4
1024 ]) rank =5 (D∗

5 lattice)
5 [* -1, 2, -4, -5, 8 *] E([tu(u + 1)3, (1/4)t2(u + 1)2])) rank = 6 (E∗

6 lattice)
6 [* -2, -3, 4, -5, 6 *] E([t3u(u + 1), (1/4)t4(u + 1)4u2]) rank = 6 (D∗

6 lattice)
7 [* -1, -5, 6 *] y2 = (u + 1)2t2x6 − 4tux + 4tu

Table: List of degree 5, weight 0 motives



Number γ list Variety other prop.
1 [* -1, 3, 5, -6, -9, -10, 18 *] dimension 4 elliptic fib.
2 [* -2, 3, 4, -6, -8, -9, 18 *] dimension 4 elliptic fib.
3 [* 3, -6, -6, -9, 18 *] D=2, No=1 (non-primitive)
4 [* 1, -4, -6, -9, 18 *] E([0, t2, 0, 16t4u, 64t5u6 ]) rank=7, E∗

7 lattice
5 [* -2, 5, -7, -10, 14 *] y2 = 4x5 + 4x2tu2 − 4t2u + t2
6 [* 3, -4, -6, -7, 14 *] y2 = 16t3x7 + 4t2x4 + 16tu2x2 + 16tux
7 [* 1, -2, -6, -7, 14 *] y2 = 16tu2x6 − 16t2u − 16t2x + 4t2
8 [* -3, -4, 5, -10, 12 *] E([0,−tu, 0,−t3, (1/4)t2u6 + t4u])) rank=8 (E∗

8 lattice)
9 [* 1, -2, -3, -8, 12 *] E([−t3, (1/4)t4u2(u + 1)4 ]) rank=8 (E∗

8 lattice)
10 [* -1, 5, -6, -10, 12 *] y2 = 4tx5 − 4u2x − 4u + 1
11 [* -2, 4, -6, -8, 12 *] D=3,No=1 (non-primitive)
12 [* -6, -6, 12 *] D=1,No=1 (non-primitive)

13 [* 1, -2, -5, -6, 12 *] E([0, 1, 0, 0,−
64u

(
t−u2

)2
t2

]) rank =6 (D∗
6 lattice)

14 [* -1, 3, -6, -8, 12 *] E([−t, t(−1 + u)2u4 ]), u = x4/x5 rank=8 (E∗
8 lattice)

15 [* 3, -4, -5, -6, 12 *] E([−tu
(
t + u3

)
, t2u4

4 ]) rank = 7 (E∗
7 lattice)

16 [* -2, -3, 4, -8, 9 *] E([t3(−1 + u), 1/4t4(−1 + u)2u4 ]) rank 7 (E∗
7 lattice)

17 [* -1, 2, -4, -6, 9 *] E([t(−1 + u)u2, 1/4t2 ]) rank 7 (E∗
7 lattice)

18 [* -3, -6, 9 *] D=2,No=3 (non-primitive)
19 [* 1, -2, -3, -5, 9 *] E([−t3u, 1/4t4(−1 + u)2u4 ]) rank 7 (E∗

7 lattice)
20 [* -2, -6, 8 *] D=3,No=3 (non-primitive)
21 [* -1, -6, 7 *] y2 = u2x8+(−2u2−2u)x7+(u+1)2x6−4tu
22 [* -2, -5, 7 *] y2 = t2u2x6 + (−4tu + 4t)x + 4tu
23 [* -3, -4, 7 *] E([−t3(u − 1)2u, t5u5 ]) rank=7 (E∗

7 lattice)

Table: List of degree 6, weight 0 motives



Thank you!



Application to modular forms
For t = −1/80 we have S = −9, hence both elliptic curves E1, E2
are 2-isogenous over Q. The corresponding modular form for them
is an eta product

η2(2τ)η2(10τ) = q
∞∏
n=1

(1− q2n)2(1− q10n)2 =
∞∑
n=0

anq
n

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/20/
2/1/a/
What we proved is that

Tr Frobp Sym2 H1
et((E1)Q,Q`) = Hp(α, β|1/t)

for p - 10. So

a2
p = p − 1

p
+

1
p(p − 1)

p−2∑
m=0

g(4m)g(−m)4ω(− 5
16

)m

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/20/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/20/2/1/a/


Application to modular forms

For t = −1/4 we have S =
√
5, hence both elliptic curves E1, E2

are 2-isogenous over Q(
√
5) and defined over Q(

√
5). The

corresponding modular form for them is a Hilbert modular form
2.2.5.1-4096.1-f (http://www.lmfdb.org/ModularForm/GL2/
TotallyReal/2.2.5.1/holomorphic/2.2.5.1-4096.1-f)
For p - 10 we have:

I for p = p · p

a2
p = p − 1

p
+

1
p(p − 1)

p−2∑
m=0

g(4m)g(−m)4ω(− 1
64

)m

I for p inert(
−2
p

)
ap = p − 1

p
+

1
p(p − 1)

p−2∑
m=0

g(4m)g(−m)4ω(− 1
64

)m

http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-4096.1-f
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-4096.1-f

	Differential equations
	Picard-Fuchs equations
	Point counts

	Hypergeometric sums
	Hypergeometric sums

	Motives
	Chow motives

	Explicit realisations of hypergeometric motives
	Motives coming from K3 surfaces
	Fibred surfaces
	Motives coming from Artin representations

	Beyond

