Hypergeometric motives of low degrees

Bartosz Naskręcki
${ }^{1}$ University of Bristol
${ }^{2}$ Adam Mickiewicz University

Workshop on Arithmetic of Hyperelliptic Curves
Trieste, $7^{\text {rd }}$ September 2017

Equation of Gauss

Hypergeometric series

Let $a, b, c \in \mathbb{C}$. Consider a differential equation

$$
t(t-1) y^{\prime \prime}+((a+b+1) t-c) y^{\prime}+a b y=0
$$

Equivalent form: $\mathcal{D}=t(\theta+a)(\theta+b)-\theta(\theta+c-1)$, where $\theta=t \frac{d}{d t}$

$$
\mathcal{D} y=0
$$

Parameters a, b, c are called hypergeometric and they form a pair of tuples (a, b) and $(1, c)$.

Equation of Gauss

Hypergeometric series

Let $a, b, c \in \mathbb{C}$. Consider a differential equation

$$
t(t-1) y^{\prime \prime}+((a+b+1) t-c) y^{\prime}+a b y=0
$$

Equivalent form: $\mathcal{D}=t(\theta+a)(\theta+b)-\theta(\theta+c-1)$, where $\theta=t \frac{d}{d t}$

$$
\mathcal{D} y=0
$$

Parameters a, b, c are called hypergeometric and they form a pair of tuples (a, b) and $(1, c)$.

```
F<a,b, c>:=FunctionField(Rationals(),3);
F0<t>:=RationalDifferentialField(F);
RD<D>:=DifferentialOperatorRing(FO);
RH<H>,mp:=ChangeDerivation(RD,t);
op:=t*(H+a)*(H+b)-H*(H+c-1);
1/t*Inverse(mp) (op);
```


Equation of Gauss

Hypergeometric series

For c not integral we can write down the following basis of solutions:

$$
t(t-1) y^{\prime \prime}+((a+b+1) t-c) y^{\prime}+a b y=0
$$

Define

$$
F\left(\left.\begin{array}{lll}
a & b \\
& c
\end{array} \right\rvert\, t\right):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} t^{n}
$$

where

$$
(x)_{n}=x \cdot(x+1) \cdot \ldots \cdot(x+n-1)
$$

A basis of (two independent) solutions to this differential equation around $t=0$ is

$$
\begin{gathered}
y=F\left(\begin{array}{ccc}
a & b & \mid t
\end{array}\right) \\
y=t^{1-c} F\left(\begin{array}{cc}
a+1-c & b+1-c \\
2-c & \mid t
\end{array}\right)
\end{gathered}
$$

Hypergeometric equations

For positive integer d we consider two tuples $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$ and $\beta_{1}, \ldots, \beta_{d} \in \mathbb{C}$. We define a hypergeometric operator
$\mathcal{D}(\alpha, \beta):=t \cdot\left(\theta+\alpha_{1}\right) \cdot \ldots \cdot\left(\theta+\alpha_{d}\right)-\left(\theta+\beta_{1}-1\right) \cdot \ldots \cdot\left(\theta+\beta_{d}-1\right)$
Differential equation $\mathcal{D}(\alpha, \beta) y=0$ has locally d independent solutions

Around 0 one can describe the basis in terms of hypergeometric functions (β_{i} distinct modulo 1)
${ }_{d} F_{d-1}\left(\left.\begin{array}{ccc}\alpha_{1} & \ldots & \alpha_{d} \\ \beta_{1} & \ldots & \beta_{d-1}\end{array} \right\rvert\, t\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots \cdot\left(\alpha_{d}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots \cdot\left(\beta_{d-1}\right)_{n} n!} t^{n}$

Hypergeometric equations

For positive integer d we consider two tuples $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$ and $\beta_{1}, \ldots, \beta_{d} \in \mathbb{C}$. We define a hypergeometric operator

$$
\mathcal{D}(\alpha, \beta):=t \cdot\left(\theta+\alpha_{1}\right) \cdot \ldots \cdot\left(\theta+\alpha_{d}\right)-\left(\theta+\beta_{1}-1\right) \cdot \ldots \cdot\left(\theta+\beta_{d}-1\right)
$$

Differential equation $\mathcal{D}(\alpha, \beta) y=0$ has locally d independent solutions

Around 0 one can describe the basis in terms of hypergeometric functions (β_{i} distinct modulo 1)
${ }_{d} F_{d-1}\left(\left.\begin{array}{ccc}\alpha_{1} & \ldots & \alpha_{d} \\ \beta_{1} & \ldots & \beta_{d-1}\end{array} \right\rvert\, t\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots \cdot\left(\alpha_{d}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots \cdot\left(\beta_{d-1}\right)_{n} n} t^{n}$
Basis of solutions: for $1 \leq i \leq d$ $t^{1-\beta_{i}}{ }_{d} F_{d-1}\left(\left.\begin{array}{cccc}\alpha_{1}-\beta_{i}+1 & \ldots & \alpha_{d}-\beta_{i}+1 \\ \beta_{1}-\beta_{i}+1 & \ldots & \beta_{d-1}-\beta_{i}+1\end{array} \right\rvert\, t\right)$

Monodromy groups

Hypergeometric equation $D(\alpha, \beta)$ come with differential Galois group (algebraic group) and monodromy group (discrete subgroup).
Differential Galois groups $D G(\alpha, \beta)$ of $D(\alpha, \beta)$ were described and classified by Beukers and Heckman.
$D G(\alpha, \beta)$ of $D(\alpha, \beta)$ is finite iff the elements of α, β interlace.

Monodromy groups

Hypergeometric equation $D(\alpha, \beta)$ come with differential Galois group (algebraic group) and monodromy group (discrete subgroup).
Differential Galois groups $D G(\alpha, \beta)$ of $D(\alpha, \beta)$ were described and classified by Beukers and Heckman.
$D G(\alpha, \beta)$ of $D(\alpha, \beta)$ is finite iff the elements of α, β interlace.
The monodromy group can be computed by a theorem of Levelt: for $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$ (hence the system is irreducible)

$$
p_{\alpha}=\prod\left(t-\exp \left(2 \pi i \alpha_{k}\right)\right), \quad p_{\beta}=\prod\left(t-\exp \left(2 \pi i \beta_{j}\right)\right)
$$

Let A be the companion matrix of p_{α} and B of p_{β}. Then $h_{\infty}=A$, $h_{0}=B^{-1}$ and $h_{1}=A^{-1} B$.
Monodromy group $M(\alpha, \beta)$ is spanned by h_{0}, h_{∞}. Zariski closure of $M(\alpha, \beta)$ gives $D G(\alpha, \beta)$.

Transition to finite fields

$$
\begin{gathered}
F(\alpha, \beta \mid z)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{d}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{d}\right)_{n}} z^{n} . \\
\frac{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{d}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{d}\right)} \sum_{n=0}^{\infty} \frac{\Gamma\left(\alpha_{1}+n\right) \cdots \Gamma\left(\alpha_{d}+n\right)}{\Gamma\left(\beta_{1}+n\right) \cdots \Gamma\left(\beta_{d}+n\right)} z^{n} . \\
\sum_{n=0}^{\infty} \prod_{i=1}^{d}\left(\frac{\Gamma\left(\alpha_{i}+n\right)\left(1-\beta_{i}-n\right)}{\Gamma\left(\alpha_{i}\right) \Gamma\left(1-\beta_{i}\right)}\right)(-1)^{d n} z^{n} .
\end{gathered}
$$

Transition to finite hypergeometric sums

Let χ be any multiplicative character of finite field \mathbb{F}_{q}^{\times}with values in \mathbb{C}^{\times}. We fix an additive character ψ. A Gauss sum $g(\chi, \psi)$ is

$$
g(\chi, \psi)=\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x) .
$$

For a fixed generator ω of the group of characters we denote by $g(m)$ the sum $g\left(\omega^{m}, \psi\right)$.

Transition to finite hypergeometric sums

Let χ be any multiplicative character of finite field \mathbb{F}_{q}^{\times}with values in \mathbb{C}^{\times}. We fix an additive character ψ. A Gauss sum $g(\chi, \psi)$ is

$$
g(\chi, \psi)=\sum_{x \in \mathbb{F}_{q}^{\times}} \chi(x) \psi(x) .
$$

For a fixed generator ω of the group of characters we denote by $g(m)$ the sum $g\left(\omega^{m}, \psi\right)$.
Definition (Finite hypergeometric sum, BCM)
Let α, β in \mathbb{Q}^{d} such that $\alpha_{i} \not \equiv \beta_{j}(\bmod \mathbb{Z})$ and $q \alpha_{i}$ and $q \beta_{j}$ are integral. We define for any $t \in \mathbb{F}_{q}, \mathbb{q}=q-1$
$H_{q}(\alpha, \beta \mid t)=\frac{1}{1-q} \sum_{m=0}^{q-2} \prod_{i=1}^{d}\left(\frac{\left.g\left(m+\alpha_{i} \mathbb{q}\right) g\left(-m-\beta_{i} \mathbb{q}\right)\right)}{g\left(\alpha_{i} \mathbb{q}\right) g\left(-\beta_{i} \mathbb{q}\right)}\right) \omega\left((-1)^{d} t\right)^{m}$.

These sums with different normalisation were considered by Katz, Greene and McCarthy.

Finite geometric sums a la Greene, Katz and Beukers-Cohen-Mellit

We say that the sum $H_{q}(\alpha, \beta)$ is defined over \mathbb{Q} if polynomials $A(x)=\prod_{j=1}^{d}\left(x-e^{2 \pi i \alpha_{j}}\right)$ and $B(x)=\prod_{j=1}^{d}\left(x-e^{2 \pi i \beta_{j}}\right)$ are defined over \mathbb{Q} (actually \mathbb{Z}). Then there exist integers p_{1}, \ldots, p_{r} and q_{1}, \ldots, q_{s} such that

$$
\prod_{j=1}^{d} \frac{x-e^{2 \pi i \alpha_{j}}}{x-e^{2 \pi i \beta_{j}}}=\frac{\prod_{j=1}^{r} x^{p_{j}}-1}{\prod_{j=1}^{s} x^{q_{j}}-1}
$$

Finite geometric sums a la Greene, Katz and

Beukers-Cohen-Mellit

We say that the sum $H_{q}(\alpha, \beta)$ is defined over \mathbb{Q} if polynomials $A(x)=\prod_{j=1}^{d}\left(x-e^{2 \pi i \alpha_{j}}\right)$ and $B(x)=\prod_{j=1}^{d}\left(x-e^{2 \pi i \beta_{j}}\right)$ are defined over \mathbb{Q} (actually \mathbb{Z}). Then there exist integers p_{1}, \ldots, p_{r} and q_{1}, \ldots, q_{s} such that

$$
\prod_{j=1}^{d} \frac{x-e^{2 \pi i \alpha_{j}}}{x-e^{2 \pi i \beta_{j}}}=\frac{\prod_{j=1}^{r} x^{p_{j}}-1}{\prod_{j=1}^{s} x^{q_{j}}-1}
$$

Theorem (Beukers-Cohen-Mellit, 2016)

$$
H_{q}(\alpha, \beta \mid t)=\frac{(-1)^{r+s}}{1-q} \sum_{m=0}^{q-2} q^{-s(0)+s(m)} g(p m,-q m) \omega\left(\epsilon M^{-1} t\right)^{m}
$$

where $g(p m,-q m)=g\left(p_{1} m\right) \cdots g\left(p_{r} m\right) g\left(-q_{1} m\right) \cdots g\left(-q_{s} m\right)$, $M=\prod_{j=1}^{r} p_{j}^{p_{j}} \prod_{j=1}^{s} q_{j}^{-q_{j}}$ and $\epsilon=(-1)^{\sum_{i} q_{i}}$ and $s(m)$ is the multiplicity of the zero $e^{2 \pi i m / q}$ in $G C D(A(x), B(x))$.

Canonical variety

Variety V_{t} attached to hypergeometric datum $\left(p_{1}, \ldots, p_{r}\right)$, $\left(q_{1}, \ldots, q_{s}\right)$
$V_{t}: x_{1}+x_{2}+\cdots+x_{r}-\left(y_{1}+\cdots+y_{s}\right)=0, \quad t x_{1}^{p_{1}} \cdots x_{r}^{p_{r}}=y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}$

$$
V_{t} \subset \mathbb{P}^{r+s-1}
$$

Canonical variety

Variety V_{t} attached to hypergeometric datum $\left(p_{1}, \ldots, p_{r}\right)$, $\left(q_{1}, \ldots, q_{s}\right)$
$V_{t}: x_{1}+x_{2}+\cdots+x_{r}-\left(y_{1}+\cdots+y_{s}\right)=0, \quad t x_{1}^{p_{1}} \cdots x_{r}^{p_{r}}=y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}$

$$
V_{t} \subset \mathbb{P}^{r+s-1}
$$

Lemma (Beukers-Cohen-Mellit, 2016)

Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s}\right)=1$. Let $V_{t}\left(\mathbb{F}_{q}^{\times}\right)$be the set of points on V_{t} with coordinates in \mathbb{F}_{q}^{\times}. Then

$$
\left|V_{t}\left(\mathbb{F}_{q}^{\times}\right)\right|=\frac{1}{q}(q-1)^{r+s-2}+\frac{1}{q(q-1)} \sum_{m=0}^{q-2} g(p m,-q m) \omega(\epsilon t)^{m}
$$

Theorem (Beukers-Cohen-Mellit, 2016)
There exists a smooth compactification $\overline{V_{t}}$ of V_{t} such that

$$
\left|\overline{V_{t}}\left(\mathbb{F}_{q}\right)\right|=P_{r s}(q)+(-1)^{r+s-1} q^{\min (r-1, s-1)} H_{q}(\alpha, \beta \mid M t)
$$

where $P_{r s}$ is a polynomial (explicit).
This compactification might not be a minimal one. Subscheme $\overline{V_{t}} \backslash V_{t}$ is produced combinatorially but is quite difficult to work with.

For canonical varieties of dimension 2 we can obtain often a better compactification (minimal).

L-function datum

- Hypergeometric data (α, β) comes with degree and weight.
- degree $=\max ($ length (α), length $(\beta))$
- Fedorov proved that the connection of rank d on trivial holomorphic bundle over $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ has a real polarizable variation of Hodge structures and gave a recipe for the Hodge vector (with $\alpha_{m}+\alpha_{d+1-m} \in \mathbb{Z}, \beta_{m}+\beta_{d-1}+1-m \in \mathbb{Z}$):

$$
\rho(j):=\#\left\{i: \alpha_{i}<\beta_{j}\right\}-j
$$

weight $=p_{+}-p_{-}, p_{+}=\max \rho(k), p_{-}=\min \rho(k)$ and

$$
\text { rk } H^{k-p_{-},-k+p_{+}}=\# \rho^{-1}(k)
$$

L-function datum

- One can compute the good factors of the L-function of hypergeometric motive $H(\alpha, \beta \mid t)$ (defined over \mathbb{Q} for $t \in \mathbb{Q}$) using the hypergeometric formula $H_{q}(\alpha, \beta \mid t)$
- Bad factors correspond to primes p that divide α_{i} or β_{j} or numerator or denominator of $(t-1) / t$.
- Computation of L-function of the hypergeometric motive $H(\alpha, \beta \mid t)$ can be partially done now in MAGMA (Mark Watkins package).

Questions

- What can one say in general about those L-functions? (Rodriguez Villegas, Roberts, Watkins; Cohen, Kedlaya, Voight, Yui, ...)
- Equivalently one can talk about a motive $X(\alpha, \beta \mid t)$ attached to this data. In what sense the motive is defined, e.g. is there an effective Chow motive. Can one compute the motivic Galois group when this motive varies in family?

Questions

- What can one say in general about those L-functions? (Rodriguez Villegas, Roberts, Watkins; Cohen, Kedlaya, Voight, Yui, ...)
- Equivalently one can talk about a motive $X(\alpha, \beta \mid t)$ attached to this data. In what sense the motive is defined, e.g. is there an effective Chow motive. Can one compute the motivic Galois group when this motive varies in family?
- Hypergeometric motives of weight 0 correspond to Artin representations.
Hypergeometric motives of weight 1 originate from curves. Hypergeometric motives of weight 2 can be found in surfaces.

Motives of surfaces

X - smooth projective surface over a number field K
$H^{2}(X)=H_{e t}^{2}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)$ has pure weight 2 and the hypergeometric motive of weight 2 can be found essentially in the transcendental part (not algebraic) of this subspace.
From the theory of motives of surfaces this produces a Chow motive via a decomposition of the diagonal correspondence $\left[\Delta_{X}\right]=\sum_{0 \leq i \leq 4} \pi_{i}$ (Kahn-Murre-Pedrini):

$$
h(X)=\sum_{i} h_{i}(X), \quad h_{i}(X)=\left(X, \pi_{i}, 0\right)
$$

π_{2} splits as $\pi_{2}^{\text {alg }}+\pi_{2}^{t r}$ and we have the decomposition

$$
h_{2}(X) \cong h_{2}^{\text {alg }}(X) \oplus t_{2}(X)
$$

where $h_{2}^{\text {alg }}(X) \cong h\left(\underline{\mathrm{NS}}{ }_{X}\right)(1)$ is the Artin motive associated to $\underline{N S_{X}}=\mathrm{NS}\left(X \otimes_{K} \overline{\left.K^{\text {sep }}\right)_{\mathbb{Q}}}(\mathbb{Q}\right.$-linear geometric Néron-Severi group with G_{K}-module structure).

Fibred surfaces

We consider a smooth projective irreducible surface X with relatively minimal fibration $X \rightarrow C$ over a field $k=\bar{k}$.
One has the intersection pairing on $N S(X) /$ tors.
Generic fibre of genus 1 with a marked point provides a structure of elliptic surface.
For genus $g>1$ we pass to the Jacobian of the generic fibre.
Genus 0 fibrations are helpful for the unirational implies rational argument.

There is a Shioda-Tate formula for the rank of the NS group

$$
\operatorname{rk} \mathrm{NS}(X)=2+\sum_{v \in R}\left(m_{v}-1\right)+\operatorname{rank}(J(k(C)))
$$

Singular fibres were classified by Kodaira in genus 1 case and in general it is a hard but computable task.

Motives coming from Artin representations

The monodromy group of the hypergeometric equation is finite, hence a differential Galois group is finite. This implies that hypergeometric series lies in certain finite algebraic extension of $\mathbb{Q}(t)$.

- If the motive comes from a variety V_{t} of dimension 0 we can explicitely see the Galois action on the closed points
- If V_{t} is a positive dimension vartiety then the motive is hidden in the subgroup of algebraic cycles in the middle etale cohomology of a suitable compactification.
- If V_{t} is a surface then we build a minimal regular model S_{t} and analyse the image of $N S\left(S_{t}\right)$ in $H_{e t}^{2}\left(S_{t}, \mathbb{Q}_{\ell}\right)$.

Theorem (BN, 2017)

Let $H(\alpha, \beta \mid t)$ be a hypergeometric motive of degree $d, 2 \leq d \leq 8$ and weight 0 . Suppose that the canonical variety V_{t} of H is a surface.

Then there exists an elliptic (or hyperelliptic) relatively minimal fibration $S_{t} \rightarrow \mathbb{P}^{1}$ such that $H(\alpha, \beta \mid t)$ is an explicit Chow submotive of $N S\left(S_{t}\right)$.

$$
\left|S_{t}\left(\mathbb{F}_{q}\right)\right|=\underbrace{1}_{H^{0}}+\underbrace{0}_{H^{1}}+\underbrace{f(q)}_{H^{2}}+\underbrace{q H\left(\alpha, \beta \mid M_{H} t\right)}_{H^{2} H G M}+\underbrace{0}_{H^{3}}+\underbrace{q^{2}}_{H^{4}}
$$

Case $[-1,2,-3,-4,6]$ of degree 3 , weight 0 .

Variety $V_{t}: t x_{2}^{2}-x_{1} x_{3}^{3}\left(-1-x_{1}-x_{2}-x_{3}\right)^{4}=0$. We find an elliptic fibration

$$
E_{t}: y^{2}=x^{3}-t x^{2}+\frac{t^{2}(u-1)^{2} u^{4}}{4}
$$

over $\mathbb{Q}(t)(u)$. Reducible singular fibres at $u=0\left(I_{4}\right)$ and $u=1\left(I_{2}\right.$ non-split, with Galois action above $\mathbb{Q}(\sqrt{-t})$. Elliptic fibration $\mathcal{E}_{t} \rightarrow \mathbb{P}^{1}$ is rational and according to classification theorem of Shioda-Inose we have (generically) for $K=\overline{\mathbb{Q}(t)}$

$$
E_{t}(K(u)) \cong A_{1}^{*} \oplus A_{3}^{*}
$$

We use the fact that the Mordell-Weil group is spanned by points of the form $P=\left(a u^{2}+b u+c, \ldots\right)$. We can also use the map to singular fibres to restrict the coefficients a, b, c. Finally we solve a Groebner basis problem.

The following points span the Mordell-Weil group:

$$
R_{1}=\left(0,1 / 2 t(u-1)^{2} u^{2}\right)
$$

and

$$
Q_{i}=\left(a_{i} t u(u-1), \frac{a_{i} t \sqrt{-t}}{2} u(u-1)\left(u+\frac{2}{a}\right)\right)
$$

for $1 \leq i \leq 4$ such that a_{i} is a root of $a^{4} t+4 a^{3} t+1$.
Degeneration: For $t \neq \frac{1}{27}$ we have $E_{t}(K(u)) \cong A_{1}^{*} \oplus A_{3}^{*}$ and otherwise $\left(A_{1}^{*}\right)^{2} \oplus\left\langle\frac{1}{4}\right\rangle$.
Group $E_{t}(K(u))$ has index four sublattice spanned by R_{1} and three points

$$
P_{i}=\left(b_{i} u^{2},\left(\frac{\sqrt{b_{i} t}}{2} u-\frac{t^{2}}{2 \sqrt{b_{i} t}}\right) u^{2}\right), \quad i=1,2,3
$$

where $4 b^{3}-b t+t^{2}=4 \prod_{i=1}^{3}\left(b-b_{i}\right)$.

Theorem (BN, 2017)
Let $t \in \mathbb{Q}$ be general. The Galois module $H=H_{e t}^{2}\left(\mathcal{E}_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)$ is Gal($(\mathbb{Q} / \mathbb{Q})$ isomorphic to

$$
1^{5} \oplus \rho_{2} \oplus \rho_{3}
$$

where ρ_{2} is a two-dimensional representation attached to the quadratic character of $\mathbb{Q}(\sqrt{-t})$ and ρ_{3} is the Artin representation associated with the space $\left\langle P_{1}, P_{2}, P_{3}\right\rangle \otimes \mathbb{Q}_{\ell}$.

$$
\left.\begin{gathered}
\left.\left|\mathcal{E}_{t}\left(\mathbb{F}_{q}\right)\right|=1+\left(6+\left(\frac{-t}{q}\right)\right) q+\operatorname{Tr}^{\operatorname{Frob}}{ }_{q} \right\rvert\, \rho_{3}+q^{2} \\
\operatorname{TrFrob} \\
q
\end{gathered} \right\rvert\, \rho_{3}=q H_{q}(\alpha, \beta \mid 27 t) .
$$

$$
P_{i}=\left(b_{i} u^{2},\left(\frac{\sqrt{b_{i} t}}{2} u-\frac{t^{2}}{2 \sqrt{b_{i} t}}\right) u^{2}\right), \quad i=1,2,3
$$

where $4 b^{3}-b t+t^{2}=4 \prod_{i=1}^{3}\left(b-b_{i}\right)$.
We have that

$$
\mathcal{D}(1 / 3,2 / 3 ; 3 / 2) b=0
$$

Hypergeometric differential equation $\mathcal{D}(1 / 3,2 / 3 ; 3 / 2) y=0$ has two independent solutions around 0 with basis generated by

$$
F_{1}={ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; \left.\frac{3}{2} \right\rvert\, z\right) \quad F_{2}=z^{-1 / 2}{ }_{2} F_{1}\left(-\frac{1}{6}, \frac{1}{6} ; \left.\frac{1}{2} \right\rvert\, z\right)
$$

so the roots x_{1}, x_{2}, x_{3} of $x^{3}-\frac{27}{4 z} x+\frac{27}{4 z}$ are

$$
x_{1}=F_{1} \quad x_{2}=-\frac{1}{2} F_{1}+\frac{3 \sqrt{3}}{2} F_{2} \quad x_{3}=-\frac{1}{2} F_{2}-\frac{3 \sqrt{3}}{2} F_{2}
$$

So $x\left(P_{i}\right)=t \alpha_{i}(27 t)$.

Differential equation $\mathcal{D}\left(\frac{1}{6}, \frac{3}{6}, \frac{5}{6} ; \frac{3}{4}, \frac{5}{4}\right) y=0$ has three independent solutions around 0

$$
G_{1}={ }_{3} F_{2}\left(\frac{1}{6}, \frac{3}{6}, \frac{5}{6} ; \frac{3}{4}, \left.\frac{5}{4} \right\rvert\, z\right)
$$

$G_{2}=z^{\frac{1}{4}}{ }_{3} F_{2}\left(\frac{5}{12}, \frac{9}{12}, \frac{13}{12} ; \frac{5}{4}, \left.\frac{6}{4} \right\rvert\, z\right) \quad G_{3}=z^{-\frac{1}{4}}{ }_{3} F_{2}\left(-\frac{1}{12}, \frac{3}{12}, \frac{7}{12} ; \frac{3}{4}, \left.\frac{2}{4} \right\rvert\, z\right)$
The roots $\pm y_{1}, \pm y_{2}, \pm y_{3}$ of the polynomial $\frac{4}{27} z x^{6}-x^{2}+1$ are

$$
\begin{aligned}
y_{1}=G_{1} \quad y_{2} & =\frac{1}{2 \sqrt{2} 3^{3 / 4}}\left(G_{2}-6 \sqrt{3} G_{3}\right) \quad y_{3}=\frac{\sqrt{-1}}{2 \sqrt{2} 3^{3 / 4}}\left(G_{2}+6 \sqrt{3} G_{3}\right) \\
P_{i} & =\left(t x_{i}(27 t) u^{2}, u^{2}\left(\frac{t y_{i}(27 t)}{2} u-\frac{t^{2}}{2 t y_{i}(27 t)}\right)\right) .
\end{aligned}
$$

Hyperelliptic case

We analyse example in degree 6, weight 0 : $[-2,5,-7,-10,14]$. Variety V_{t} with fibration determined by $u=\frac{x_{3} x_{4}}{x_{5}^{2}}$ determines a smooth projective surface S_{t} with fibration $\pi: S_{t} \rightarrow \mathbb{P}^{1}$ and generic fibre

$$
C_{t}: y^{2}=4 x^{5}+4 x^{2} t u^{2}-4 t^{2} u+t^{2}
$$

With choice of parameter $u^{\prime}=\frac{x_{1} x_{3}}{x_{5}^{2}}$ we can show that the surface S_{t} is unirational, hence by a theorem of Castelnuovo it is rational. For such genus g fibrations Saito proved that Picard rank satisfies

$$
\rho\left(S_{t}\right) \leq 4 g+6
$$

Shioda proved that the Jacobian $J=J\left(C_{t}\right)$ over $\mathbb{Q}(t)(u)$ satisfies $J(\overline{\mathbb{Q}(t)}(u)) \cong \mathrm{NS}\left(S_{t}\right) / T$ where T is the trivial lattice spanned by zero section, general fibre and components of reducible fibres of fibration π.

All fibres except the fibre at $u=\infty$ are irreducible. That one looks like this

We find a point $P_{0}=(0, t)$ on C_{t} and we have also a unique point at infinity P_{∞}. There is a Galois orbit of points

$$
P_{a}=\left(a, 2 a \sqrt{t}\left(u-t /\left(2 a^{2}\right)\right)\right)
$$

where $4 a^{7}+a^{2} t^{2}-t^{3}=0$.

All fibres except the fibre at $u=\infty$ are irreducible. That one looks like this

We find a point $P_{0}=(0, t)$ on C_{t} and we have also a unique point at infinity P_{∞}. There is a Galois orbit of points

$$
P_{a}=\left(a, 2 a \sqrt{t}\left(u-t /\left(2 a^{2}\right)\right)\right)
$$

where $4 a^{7}+a^{2} t^{2}-t^{3}=0$.
Points on the Jacobian $Q_{0}=P_{0}-P_{\infty}$ and $Q_{a}=P_{a}-P_{\infty}$ are linearly independent and form a basis of the Mordell-Weil group (which follows from the height computation and the upper bound). The Néron-Severi lattice is unimodular (because the surface is rational!). From the point count it follows that

$$
S_{t}\left(\mathbb{F}_{q}\right)=1+4 q+2 q\left(1+\omega(t)^{(q-1) / 2}\right)+q H_{q}(\alpha, \beta \mid M t)+q^{2}
$$

Subgroup of $\operatorname{NS}\left(S_{t}\right)$ spanned by sections P_{a} (dimension 7) corresponds to the hypergeometric motive.

Number	γ list	Variety	other prop.
$\mathbf{1}$	$\left[{ }^{*}-1,-1,2^{*}\right]$	$E\left(\left[0, \frac{(\mathbf{1}+u)^{\mathbf{2}}}{4}, 0, \frac{t u^{\mathbf{2}}(\mathbf{1}+u)}{2}, \frac{t^{\mathbf{2} u^{4}}}{4}\right]\right)$	rank $1\left(A_{1}^{*}\right.$ lattice $)$

Table: List of degree 1 , weight 0 motives

Number	γ list	Variety	other prop.
1	$\left[{ }^{*} 1,-2,-2,-3,6^{*}\right]$	$E\left(\left[-t^{3} u^{2}, 1 / 4 t^{4}(u-1)^{2} u^{4}\right]\right)$	rank=4 ($D_{\mathbf{4}}^{*}$ lattice $)$
2	$\left[{ }^{*}-2,-2,4^{*}\right]$	$\mathrm{D}=1, \mathrm{No=1}($ non-primitive $)$	
3	$\left[{ }^{*}-1,-2,3^{*}\right]$	$E\left(0, \frac{u^{2}}{4}, 0, \frac{1}{2} t(u-1) u^{2}, \frac{1}{4} t^{2}(u-1)^{2} u^{2}\right)$	rank $=2\left(A_{\mathbf{2}}^{*} \oplus Z / 3\right)$

Table: List of degree 2 , weight 0 motives

Number	γ list	Variety	other prop.
1	$\left[{ }^{*}-1,2,-3,-4,6^{*}\right]$	$E\left(\left[t u(u+1), \frac{t^{2}}{4}\right]\right)$ (param. 1)	rank=4 (D_{4}^{*} lattice)
2	$\left[{ }^{*}-3,-3,6^{*}\right]$	$\mathrm{D}=1, \mathrm{No=1}($ non-primitive $)$	
3	$\left[{ }^{*}-1,-3,4^{*}\right]$	$E\left(\left[0, u^{2}, 0,16 t(-1+u)^{2} u, 0\right]\right)$	rank=3 $\left(A_{3}^{*}+\mathbb{Z} / 2\right)$

Table: List of degree 3 , weight 0 motives

Number	γ list	Variety	other prop.
1	[* -1, 2, 3, -4, -6, -6, 12 *]	$E\left(\left[-u^{2}(u+1)^{2} t, 1 / 4 t^{2}\right]\right)$	rank $=8$ (E_{8}^{*} lattice)
2	[* 2, -4, -4, -6, 12 *]	$\mathrm{D}=2, \mathrm{No}=1$ (non-primitive)	
3	[* 1, -3, -4, -6, $12{ }^{*}$]	$E\left(\left[-t^{3}(u+1)^{2} u^{2}, t^{5}\right]\right)$	rank $=8$ (E_{8}^{*} lattice)
4	$\left[{ }^{*}-2,3,-5,-6,10{ }^{*}\right]$	$E\left(\left[0, t / 16,0,0,2 t^{4}(u-1) u^{5}\right]\right)$	rank $=4$ (A_{4}^{*} lattice $)$
5	[* 1, -2, -4, -5, $10{ }^{*}$]	$E\left(\left[0,4 / t+u^{2}, 0,0,-64 u^{5}\right]\right)$	rank $=4$ (A_{4}^{*} lattice $)$
6	[* $\left.-1,3,-4,-6,8^{*}\right]$	$E\left(\left[-t u^{2}(u+1)^{2},(1 / 4) t^{2} u^{2}\right]\right)$	rank $=6$ (E_{6}^{*} lattice $)$
7	[* $\left.-4,-4,8^{*}\right]$	$\mathrm{D}=1, \mathrm{No}=1$ (non-primitive)	
8	[* 1, -2, -3, -4, 8^{*}]	$E\left(\left[-t^{3} u^{2}(u+1)^{2}, t^{5} u^{2}\right]\right)$	rank $=6$ (E_{6}^{*} lattice $)$
9	[* -2, -4, 6 *]	$\mathrm{D}=2, \mathrm{No}=3$ (non-primitive)	
10	[*-1, -4, 5^{*}]	$\begin{aligned} & y^{2}=x^{6}+(-2 u-2) x^{5}+(u+1)^{2} x^{4}- \\ & 4 t u^{5} \end{aligned}$	
11	$\left[*-2,-3,5^{*}\right]$	$E\left(\left[0,0,0,-t^{3} u^{3}, \frac{1}{4} t^{4}(u-1)^{2} u^{2}\right]\right)$	rank $=5\left(A_{5}^{*}\right.$ lattice $)$

Table: List of degree 4, weight 0 motives

Number	γ list	Variety	other prop.
1	$\left[{ }^{*}-1,4,-5,-8,10^{*}\right]$	$E\left(\left[t-u^{3},-\left(u^{2}\left(4 t-u^{2}\right)\right) / 4\right]\right)$	rank $=7$ (E_{7}^{*} lattice)
2	$\left[{ }^{*}-1,2,-5,-6,10^{*}\right]$	$E\left(\left[0,-t u^{2}, 0,-t^{3} u, t^{4} u\left(u^{2}+t\right)\right]\right)$	rank=6 (E_{6}^{*} lattice)
3	$\left[{ }^{*}-5,-5,10^{*}\right]$	$\mathrm{D}=1, \mathrm{No}=1($ non-primitive $)$	
4	$\left[{ }^{*} 2,-3,-4,-5,10^{*}\right]$	$E\left(\left[0,-t, 0,0,-\frac{t^{2}(u-1) u^{4}}{1024}\right]\right)$	rank $=5\left(D_{5}^{*}\right.$ lattice)
5	$\left[{ }^{*}-1,2,-4,-5,8^{*}\right]$	$\left.E\left(\left[t u(u+1)^{3},(1 / 4) t^{2}(u+1)^{2}\right]\right)\right)$	rank $=6\left(E_{6}^{*}\right.$ lattice $)$
6	$\left[{ }^{*}-2,-3,4,-5,6^{*}\right]$	$E\left(\left[t^{3} u(u+1),(1 / 4) t^{4}(u+1)^{4} u^{2}\right]\right)$	rank $=6$ (D_{6}^{*} lattice)
7	$\left[{ }^{*}-1,-5,6^{*}\right]$	$y^{2}=(u+1)^{2} t^{2} x^{6}-4 t u x+4 t u$	

Table: List of degree 5 , weight 0 motives

1	[**1, 3, 5, -6, -9, -10, 18*]	dimension 4 elliptic fib.	
2	[* $\left.{ }^{*}-2,3,4,-6,-8,-9,18{ }^{*}\right]$	dimension 4 elliptic fib.	
3	[* 3, -6, -6, -9, 18 *]	$\mathrm{D}=2, \mathrm{No}=1$ (non-primitive)	
4	[* 1, -4, -6, -9, 18 *]	$E\left(\left[0, t^{2}, \mathbf{0}, 16 t^{4} u, 64 t^{5} u^{6}\right]\right)$	rank $=7, E_{7}^{*}$ lattice
5	[*-2, 5, -7, -10, $14{ }^{*}$]	$y^{2}=4 x^{5}+4 x^{2} t u^{2}-4 t^{2} u+t^{2}$	
6	[* 3, -4, -6, -7, $14{ }^{*}$]	$y^{2}=16 t^{3} x^{7}+4 t^{2} x^{4}+16 t u^{2} x^{2}+16 t u x$	
7	[* 1, -2, -6, -7, $14{ }^{*}$]	$y^{2}=16 t u^{2} x^{6}-16 t^{2} u-16 t^{2} x+4 t^{2}$	
8	[**-3, -4, 5, -10, 12 *]	$\left.E\left(\left[\mathbf{0},-t u, \mathbf{0},-t^{\mathbf{3}},(\mathbf{1} / 4) t^{2} u^{6}+t^{4} u\right]\right)\right)$	rank=8 (E_{8}^{*} lattice)
9	[* 1, -2, -3, -8, 12 *]	$E\left(\left[-t^{\mathbf{3}},(\mathbf{1} / \mathbf{4}) t^{\mathbf{4}} u^{\mathbf{2}}(u+\mathbf{1})^{\mathbf{4}}\right]\right)$	rank=8 (E_{8}^{*} lattice)
10	[**-1, 5, -6, -10, 12 **]	$y^{2}=4 t x^{5}-4 u^{2} x-4 u+1$	
11	[*-2, 4, -6, $\left.-8,12{ }^{*}\right]$	$\mathrm{D}=3, \mathrm{No}=1$ (non-primitive)	
12 13	[* -6, -6, 12 *] $\left[\begin{array}{ll}* \\ 1\end{array},-2,-5,-6,12 ~ *\right]$	$\begin{aligned} & \mathrm{D}=1, \mathrm{No}=1 \text { (non-primitive) } \\ & E\left(\left[0,1,0,0,-\frac{64 u\left(t-u^{2}\right)^{2}}{t^{t^{2}}}\right]\right) \end{aligned}$	rank $=6$ (D_{6}^{*} lattice)
14	[* -1, 3, -6, -8, 12 *]	$E\left(\left[-t, t(-\mathbf{1}+u)^{\mathbf{2}} u^{\mathbf{4}}\right]\right), u=x_{\mathbf{4}} / x_{\mathbf{5}}$	rank=8 (E_{8}^{*} lattice)
15	[* 3, -4, -5, -6, 12 *]	$E\left(\left[-t u\left(t+u^{3}\right), \frac{t^{2} u^{4}}{4}\right]\right)$	rank $=7$ (E_{7}^{*} lattice)
16	[* -2, -3, 4, -8, 9 *]	$E\left(\left[t^{\mathbf{3}}(-\mathbf{1}+u), \mathbf{1} / \mathbf{4} t^{\mathbf{4}}(-\mathbf{1}+u)^{\mathbf{2}} u^{\mathbf{4}}\right]\right)$	rank 7 (E_{7}^{*} lattice)
17	[* -1, 2, -4, -6, 9*]	$E\left(\left[t(-1+u) u^{2}, \mathbf{1} / 4 t^{2}\right]\right)$.	rank 7 (E_{7}^{*} lattice)
18	[* -3, -6, 9 *]	$\mathrm{D}=2, \mathrm{No}=3$ (non-primitive)	
19	[* 1, -2, -3, -5, $\left.{ }^{*}{ }^{*}\right]$	$E\left(\left[-t^{3} u, 1 / 4 t^{4}(-1+u)^{2} u^{4}\right]\right)$	rank 7 (E_{7}^{*} lattice)
20	[* -2, -6, 8^{*}]	$\mathrm{D}=3, \mathrm{No}=3$ (non-primitive)	
21	[* -1, -6, $\mathbf{7}^{*}$]	$y^{2}=u^{2} x^{8}+\left(-2 u^{2}-2 u\right) x^{7}+(u+1)^{2} x^{6}-4 t u$	
22	[* -2, -5, $\mathbf{7}^{*}$]	$y^{2}=t^{2} u^{2} x^{6}+(-4 t u+4 t) x+4 t u$	
23	[* -3, -4, $\mathbf{7}^{*}$]	$E\left(\left[-t^{\mathbf{3}}(u-1)^{\mathbf{2}} u, t^{5} u^{5}\right]\right)$	rank $=7$ (E_{7}^{*} lattice)

Table: List of degree 6 , weight 0 motives

Thank you!

Application to modular forms

For $t=-1 / 80$ we have $S=-9$, hence both elliptic curves E_{1}, E_{2} are 2-isogenous over \mathbb{Q}. The corresponding modular form for them is an eta product

$$
\eta^{2}(2 \tau) \eta^{2}(10 \tau)=q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}\left(1-q^{10 n}\right)^{2}=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/20/ 2/1/a/
What we proved is that

$$
\operatorname{Tr}_{\operatorname{Frob}}^{p} \text { Sym }{ }^{2} H_{e t}^{1}\left(\left(E_{1}\right)_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)=H_{p}(\alpha, \beta \mid 1 / t)
$$

for $p \nmid 10$. So

$$
a_{p}^{2}=p-\frac{1}{p}+\frac{1}{p(p-1)} \sum_{m=0}^{p-2} g(4 m) g(-m)^{4} \omega\left(-\frac{5}{16}\right)^{m}
$$

Application to modular forms

For $t=-1 / 4$ we have $S=\sqrt{5}$, hence both elliptic curves E_{1}, E_{2} are 2-isogenous over $\mathbb{Q}(\sqrt{5})$ and defined over $\mathbb{Q}(\sqrt{5})$. The corresponding modular form for them is a Hilbert modular form 2.2.5.1-4096.1-f (http://www.lmfdb.org/ModularForm/GL2/ TotallyReal/2.2.5.1/holomorphic/2.2.5.1-4096.1-f) For $p \nmid 10$ we have:

- for $p=\mathfrak{p} \cdot \overline{\mathfrak{p}}$

$$
a_{\mathfrak{p}}^{2}=p-\frac{1}{p}+\frac{1}{p(p-1)} \sum_{m=0}^{p-2} g(4 m) g(-m)^{4} \omega\left(-\frac{1}{64}\right)^{m}
$$

- for p inert

$$
\left(\frac{-2}{p}\right) a_{p}=p-\frac{1}{p}+\frac{1}{p(p-1)} \sum_{m=0}^{p-2} g(4 m) g(-m)^{4} \omega\left(-\frac{1}{64}\right)^{m}
$$

